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Motivation

• In the highly symmetric cases where explicit computations can be performed, it

has been found that the hydrodynamic expansion is a divergent asymptotic series

[recall Michal’s talk]

• Nevertheless, this is not the case for the dispersion relation of the hydrodynamic

modes [Saso’s talk]

• We would like to understand how the analyticity properties of the dispersion

relation imprint themselves on the hydrodynamic expansion in real space.

• As a first step do address this question, in this talk I am going to discuss the

late-time expansion of linearized relativistic hydrodynamics.
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Benchmark model

We will we working with conformal Mueller-Israel-Steward hydrodynamics

∂µT
µν = 0,

(τΠ uαDα + 1)πµν = −η σµν ,

where the stress-energy tensor is given by

Tµν = Euµuν + P(E)∆µν + πµν .

We will consider a static fluid in thermal equilibrium at temperature T placed in

four-dimensional Minkowski spacetime, and analyze infinitesimal fluctuations around

it:

• Shear channel: uµ = (1, 0, 0, 0) + εδu1(t, x3), π1,3 = εδπ1,3(t, x3).

• Sound channel: uµ = (1, 0, 0, 0) + εδu3(t, x3), πi,i = εδπi,i (t, x3),

E = E0 + εδE(t, x3),
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The shear channel

The shear channel e.o.m are

(E(0) + P(E(0)))∂tδu
1 + ∂xδπ

1,3 = 0,

∂tδπ
1,3 +

η

τΠ
∂xδu

1 = −
1

τΠ
δπ1,3,

They are equivalent to the quasidydrodynamical description of diffusion-to-sound

crossover [Grozdanov,Lucas & Poovuttikul].

They can be subsumed into a single equation for ρ = (E(0) + P(E(0)))δu1:

telegrapher’s equation.

After a suitable coordinate redefinition

(∂2
t + 2∂t − ∂2

x )ρ(t, x) = 0.

The dispersion relation is ω2 + 2iω − k2 = 0. There are two solutions

• Hydrodynamic mode: ωH = −i + i
√

1− k2.

• Non-hydrodynamic mode: ωNH = −i − i
√

1− k2.

Propagating modes only exist for k > kg = 1, k-gap (see [Baggioli, Brazhkin, Trachenko,

Vasin] for a survey of this phenomenon across many areas of physics).

3



The shear channel is special, in the sense that we can obtain closed form results for

some physically relevant quantities.

This is very useful, since it allows us to test the general techniques that we will

develop against explicit analytic results.

4



The shear channel

Our objective now is computing the Green’s function of the telegrapher’s equation.

This can be done explicitly:

G(t, x) = Θ(t)

∫
R

dk

4π
√

1− k2

(
e−i(ωH (k)t−kx) − e−i(ωNH (k)t−kx)

)
=

=
1

2
e−t I0(

√
t2 − x2)Θ(t − |x |).

For fixed x , t →∞, we recover the Green’s function of the heat equation,

G(t, x)→
1

2

e−
1
2

x2

t

√
2πt

.

This regime is controlled by the small k behavior of ωH(k) = −i/2k2 + ....

In the near light cone limit, τ =
√
t2 − x2 → 0,

G(t.x)→
1

2
e−t

This agrees with the Green’s function of a system supporting exponentially dampled,

massless excitations with dispersion relation ω± = −i ± |k|: this regime is controlled

by the large k behavior of the dispersion relation.
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Let us consider separately the contribution of hydro./non-hydro. modes to the Green’s

function

G(t, x) = GH(t, x)− GNH(t, x),

GH,NH(t, x) =
e−t

2π

∫ ∞
0

dk
√

1− k2
e±
√

1−k2t cos(kx).

Again, these quantities can be explicitly computed

GH =
1

2
e−t I0(τ)− i

e−tK0(τ)

2π
,

GNH = −i
e−tK0(τ)

2π
.

Note that GH = 1
2
e−t I0(τ) + GNH . This will be important later on.
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A general expression for the coefficients of the late-time expansion

We are working with integrals of the form

I (t) =

∫ kmax

0
dkf (k)eϕ(k)t .

We would like to have an algorithm which, given a general dispersion relation, allows

us to obtain the coefficients of the late-time asymptotic expansion.

Such an algorithm exists.

Assume:

• ϕ′(k = 0) = 0, ϕ(k = 0) = 0.

• ϕ(k) is monotonically decreasing.

• ϕ(k) is even.

Then, I (t) has a late-time expansion given by [Berry & Howls]

I ∼
∞∑
r=0

Γ
(
r + 1

2

)
tr+ 1

2

cr , cr =
1

4πi

∮
γ(0)

dkf (k)

(
k2

−ϕ(k)

)r+ 1
2 1

k2r+1
.
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To compute the late-time expansion of GH(t, x = 0), we take

ϕ(k) = Im ωH(k) = −1 +
√

1− k2, f (k) =
1

2π
√

1− k2
.

The integrand has two branch cuts on the real axis extending from

(−∞,−1] ∪ [1,∞). The integration contour γ(0) can be blown-up to go around both;

there is no contribution from infinity.

Computing the cut integrals explicitly, we get

cr =
Γ
(

1
2

+ r
)

2r+ 3
2 π

3
2 Γ(1 + r)

.

This agrees with the late-time expansion of the known closed form result.

Since cr is not factorially suppressed, the late-time expansion is a divergent series.
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Borel resummation in the shear channel

Given the divergent, asymptotic series

f (t) ∼
∞∑
r=0

dr

tr
,

the Borel transform

fB(z) =
∞∑
r=0

dr

r !
z r .

returns a series with finite convergence radius.

The Laplace transform of fB(z) gives us a function S(t) analytic in some region in the

complex t-plane whose late-time expansion agrees with the original asymptotic series

S(t) = t

∫ ∞
0

dze−tz fB(z).

In our case, the Borel transform of
√
tG(t, 0) can be obtained in closed form

fB(z) =
∞∑
r=0

crΓ
(
r + 1

2

)
Γ(r + 1)

z r =
1

√
2π

3
2

K
( z

2

)
.
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fB has branch cut starting at z = 2 and running along the positive real axis: the

asymptotic series is not Borel summable.

Consider lateral Borel resummations,

Sθ(t) =
√
t

∫ e iθ∞

0
dze−tz fB(z).

In particular, focus on S± ≡ S0± . They can be explicitly computed

S±(t) =
1

2
e−t I0(t)±

ie−tK0(t)

2π
.

There is an imaginary ambiguity that depends on the choice of integration contour.

When promoting the original asymptotic series to a transseries, which takes into

account the contribution of the non-hydrodynamical sector, it is possible to choose the

relative weight between the two parts in such a way that the lateral Borel

resummation of the whole transseries agrees with the true answer.
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The sound channel

After the appropriate rescalings of t, x the sound channel dispersion relation can be

put in the form

P(ω, k) = ω3 + iω2 − (1 + γ)ωk2 − ik2 = 0, γ =
4η/s

TτΠ
.

Having a group velocity such that limk→∞ |vg (k)| < 1 demands that γ < 2.

There are three modes, two hydrodynamical

ω+(k) = k −
iγ

2
k2 +

(4− γ)γ

8
k3 + . . . ,

ω−(k) = −k −
iγ

2
k2 −

(4− γ)γ

8
k3 + . . . ,

and one non-hydrodynamical, which is purely imaginary

ωNH(k) = −i(1− γk2 + (1− γ)γk4 + . . .).

In practice, these dispersion relations are determined numerically, by plugging

ω(k) =
∑∞

n=0 ank
n into P(ω(k), k) = 0 and solving recursively order by order in a

small k expansion.
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We will be considering integrals of the form

I+(t, u) =

∫
R
dkf (k)eϕ+(k)t , ϕ+(k) = −i(ω+(k)− uk)t, u =

x

t

A particularly interesting case is to take u = 1 as t →∞ (this corresponds to a

inertial observer moving at the speed of sound). For this choice of u, I+ has a saddle

point at k = 0, at which φ+ vanishes.

To procede further, we deform the original integration contour into a steepest descend

path k = ksd (ξ),

ksd (ξ) = ξ + ikI (ξ),

along which Im ϕ+(ksd (ξ)) = Im ϕ+(k = 0) = 0.
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Since the dispersion relation is only known as a series expansion, kI (ξ) has to be

determined in the same way. The end result is

ksd (ξ) = ξ + i

(
−

4− γ
8

ξ2 −
1

512
(64 + 80γ − 4γ2 − γ3)ξ4 + . . .

)
,

ϕ+(ksd (ξ)) = −
γ

2
ξ2 −

γ(16 + 24γ + 5γ2)

128
ξ4 + . . .

To arbitrary order, only even powers of ξ appear in ϕ+(ksd (ξ)), always with a negative

coefficient. As a consequence, the technical conditions spelled out before hold, and we

can write

I+ ∼
∞∑
r=0

Γ
(
r + 1

2

)
tr+ 1

2

cr , cr = Resξ=0

f̃ (ξ)

(
−

ξ2

φ+(ksd (ξ))

)r+ 1
2 1

ξ2r+1

 ,
where f̃ is the even part of k ′sd (ξ)f (ksd (ξ)).
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Example: γ = 0.7, f (k) = (1 + k2)−2. We compute I+(t, 1) numerically, and compare

the result against the late-time expansion.

sN =
N∑

p=0

Γ(p + 1/2)

tp+1/2
cp , rN+1 = sN+1 − sN ,
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What about the large order behavior? The series is factorially divergent:

20 40 60 80 100
r

100
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|dr+1/dr |

However, it is also alternating, so it is Borel resummable:

20 40 60 80 100
r
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0.5

1.0

sign(dr)
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Let us focus on the Green’s function now. We have that

G(t, x) =

∫
R
dkG(t, k)e ikx ≡ I+ + I− + INH ,

I+ =
1

2π

∫
R
dk

1

(ω+(k)− ω−(k))(ω+(k)− ωNH(k))
e−i(ω+(k)t−kx),

I− =
1

2π

∫
R
dk

1

(ω−(k)− ω+(k))(ω−(k)− ωNH(k))
e−i(ω−(k)t−kx),

INH =
1

2π

∫
R
dk

1

(ωNH(k)− ω+(k))(ωNH(k)− ω−(k))
e−i(ωNH (k)t−kx).

We are going to analyze the integral I+,reg , defined as

I+,reg =
1

2π

∫
R
dk

(
1

(ω+(k)− ω−(k))(ω+(k)− ωNH(k))
−

1

2ik

)
e−i(ω+(k)t−kx).
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Our algorithm returns again a divergent late-time expansion, however, it is not

alternating: not Borel resummable.
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r
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|dr+1/dr |

Singularity structure in complex Borel plane: three (discretized) branch cuts, one real

and two complex conjugated.
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Each branch cut corresponds to a particular imaginary ambiguity.

We expect that these ambiguities are cancelled out by non-perturbative sectors.

Can we find the corresponding non-perturbative saddle points? Yes!

• The real cut starts at zR ≈ 0.6466. There is a non-perturbative saddle point of

ϕ+ at k = −0.775436i , where φ+ = −0.646093

• The complex conjugated cuts start at z± ≈ 1.0625± 0.8000i . There are two

non-perturbative saddle points of ϕNH at k = ±0.612085 + 0.387718i , where

ϕNH = −1.059306± 0.801289i .

Main novelty: viewing the dispersion relation as a function defined on a Riemann

surface, these non-perturbative saddles might live on different sheets.
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Conclusions

• We have analyzed the late-time expansion of different physical quantities both in

the shear and in the sound channels.

• We have found that these late-time expansions might be divergent asymptotic

series.

• In some cases, we have found out that the singularity structure of the analytically

continued Borel transform of the divergent series reveals the existence of the

non-hydrodynamical saddles.
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Many thanks for your attention!
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